

1	打造"品质工程"的背景		
2	我国公路水运工程建设管理存在的问题		
3	打造"品质工程"的必要性		
4	品质工程内涵		
5	品质工程的总体要求		
6	打造品质工程的主要措施		
7	打造品质工程的保障要求		

1	打造"品质工程"的背景
2	我国公路水运工程建设管理存在的问题
3	打造"品质工程"的必要性
4	品质工程内涵解读
5	品质工程的总体要求
6	打造品质工程的主要措施
7	打造品质工程的保障要求

打造公路水运"品质工程"背景

2015年10月

全国公路水运工程质量安全工作会议上, 冯正霖副部长做了题为"适应新常态、实现新作为"全力推动公路水运工程质量安 全工作新发展的重要讲话,首次提出了打 造"品质工程"的新理念

2015年12月

全国交通运输工作会议上,交通运输部部长杨传堂部署了**2016**年度交通运输八大重点任务,明确提出,在公路水运工程建设领域以打造"品质工程"为抓手

打造公路水运"品质工程"背景

2016年1月

交通运输部办公厅将打造"品质工程"列入部集中攻坚解决行业重大问题的主要举措之一,并纳入 2016年部重点工作计划

2017年3月

全国公路水运品质工程现场推进会 在浙江省玉环县顺利召开 品质工程示范创建活动正式在全国 范围内展开

打造品质工程的背景---- 时代背景

建设质量强国宏大目标

推动中国制造向中国创造转变

推动中国速度向中国质量转变

推动中国产品向中国品牌转变

MARKIN 中国制造 *** 2025

中国制造2025+工业4.0

打造品质工程的背景---- 行业背景

我国交通基础设施建设飞速发展

2016年末全国公路总里程469.04万公里,公路密度47.68公里/百平方公里。全国等级公路里程404.63万公里,其中高速公路里程13万公里。

2016年等级公路占比

2016年公路里程

打造品质工程的背景----行业背景

我国交通基础设施建设飞速发展

2016年末全国规模以上港口码头泊位已达18417个,其中万吨级泊位2221个,内河航道通航总里程12.71万公里

泊位吨级	全国港口	比上年末 增加	沿海港口	比上年末 增加	内河港口	比上年末 增加
合计	2221	111	1807	103	414	8
1万- 3 万吨级 (不含 3 万)	793	38	619	33	174	5
3万-5万吨级 (不含5万)	369	4	266	5	103	-1
5万- 10 万吨级 (不含 10 万)	728	44	600	42	128	2
10万吨级及以 上	331	25	322	23	9	2

政策 法规 制度 不断健全

- 《公路工程设计施工总承包管理办法》《公路工程建设项目招标投标管理办法》
- 《公路建设市场管理办法》 《水运工程施工监理规定(试行)》 《公路水运工程监理企业资质管理规定》
 - 设计、施工、监理、检测等信用评价办法《关于加强公路水运工程质量安全管理若干意见》

技术 标准 体系 不断完善 10余项国家技术标准 220余项行业技术标准

地方性工程质量技术标准 制修订工作成效显著

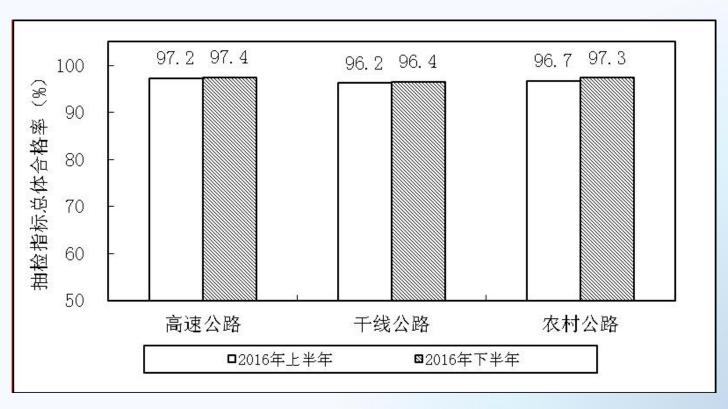
行业协会团体标准企业标准建设

安管举持加全理措续强

施工标准化、平安工地

混凝土工程质量通病治理

试验检测专项治理 监理行业树新风


技革创效显

推进施工机械化自动化

项目信息化管理

2016下半年,全国公路工程质量状况总体平稳。高速公路和干线公路抽检指标总体合格率分别为97.4%和96.4%,与2016年上半年相比(以下简称环比)基本平稳(见图1)。农村公路抽检指标总体合格率为97.3%,环比上升0.6个百分点。

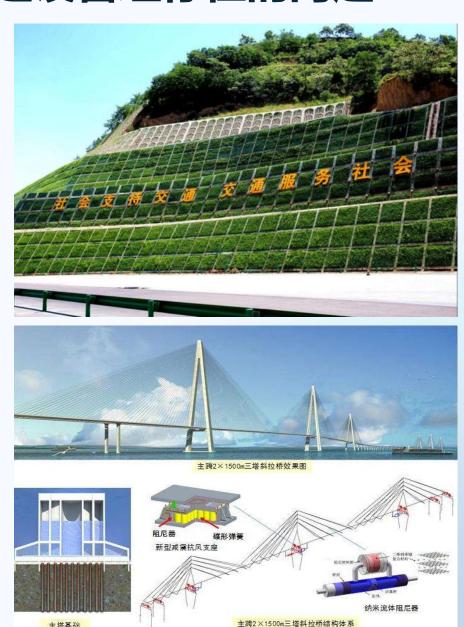
1	打造"品质工程"的背景	
2	我国公路水运工程建设管理存在的问题	
3	打造"品质工程"的必要性	
4	品质工程内涵解读	
5	品质工程的总体要求	
6	打造品质工程的主要措施	
7	打造品质工程的保障要求	

我国公路水运工程建设管理存在的问题

1、基本要素保障欠 缺

2、责任落实仍不到 位

3.建设管理仍显粗放



我国公路水运工程建设管理存在的问题

4.环境保护问题亟待解决

5.技术创新能力仍显不强

我国公路水运工程建设管理存在的问题

6. 以人为本的理念还未有 效贯彻

7. 队伍素质有待提高

1	打造"品质工程"的背景		
2	我国公路水运工程建设管理存在的问题		
3	打造"品质工程"的必要性		
4	品质工程内涵解读		
5	品质工程的总体要求		
6	打造品质工程的主要措施		
7	打造品质工程的保障要求		

打造品质工程的必要性

是落实国家"创新、协调、绿色、开放、共享"五大发展理念的重要抓手

不断提升工程建设管理水平, 使交通运输 发展成果更多更好地惠及全体人民。

打造品质工程的必要性

顺应公路水运工程建设发展新阶段的需要

·通过打造"品质工程",即是着重从工程全过程入手,以科技成果推广应用的方式全面提升工程的内在质地和外在品味,推动工程建设质量和安全管理迈上新台阶。

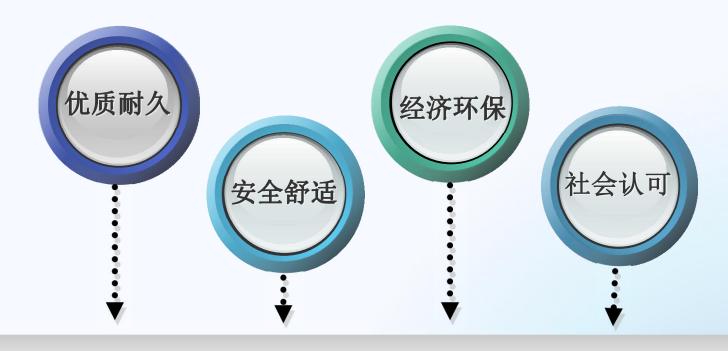
就是

"供给侧"

以前提到经济增长,条件反射就是要扩大需求、刺激消费 现在要换一种新思路、新方法,那就是**供给训放草**。

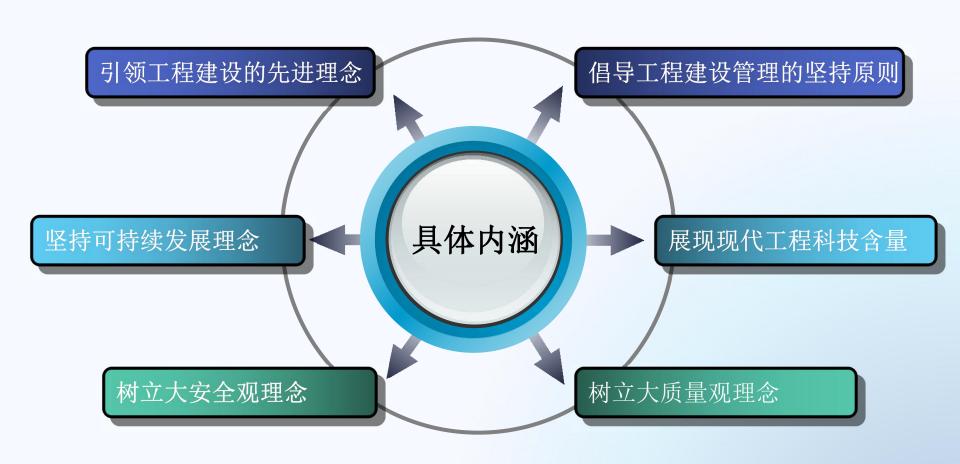
打造品质工程的必要性

提升核心竞争力,实施"走出去"战略的重要手段。


• 通过政府引导和推动企业进一步集成性能可靠、先进适用的四新技术,参与国际工程建设,将公路水运建设标准、理念、管理方式、技术设备等作为实施"走出去"战略的核心竞争力,实现我国交通工程由产品向品牌的转变。

· 发扬精益求精的工匠精神,注重工程细节,追求完美极致。培育工人严谨的工作作风,敬业的工作态度,确保工程质量安全。

1	打造"品质工程"的背景	
2	我国公路水运工程建设管理存在的问题	
3	打造"品质工程"的必要性	
4	品质工程内涵解读	
5	品质工程的总体要求	
6	打造品质工程的主要措施	
7	打造品质工程的保障要求	


品质工程内涵解读

品质工程内涵

优质耐久是基础,安全舒适是目的,经济环保是建设活动必须坚持的客观要求和基本国策,社会认可是社会文明进步的体现,让人民群众有获得感。

品质工程内涵解读

1	打造"品质工程"的背景		
2	我国公路水运工程建设管理存在的问题		
3	打造"品质工程"的必要性		
4	品质工程内涵解读		
5	品质工程的总体要求		
6	打造品质工程的主要措施		
7	打造品质工程的保障要求		

品质工程的总体要求

基本原则

把打造品质工程作为新 时期公路水运建设行业 的新目标

把使用功能作为公路水 运工程的核心价值

发挥政府政策引导作用和 市场的自我调节作用

分领域、分重点、分步骤

品质工程的总体要求

1	打造"品质工程"的背景		
2	我国公路水运工程建设管理存在的问题		
3	打造"品质工程"的必要性		
4	品质工程内涵解读		
5	品质工程的总体要求		
6	打造品质工程的主要措施		
7	打造品质工程的保障要求		

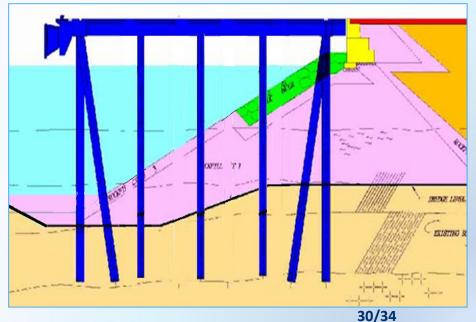

1. 强化系统设计

重点是强化全寿命周期设计

达到耐久性设计目标的可衡量的指标要求、控制措施要求

把保护生态环境放在优先位置

深圳盐田港区集装箱码头项目概况



深圳港盐田港区西作业区集装箱 码头工程整体规模

- 新建4~6号3个5万吨级集装箱泊位 (水工结构按7万吨级设计),扩建3 号泊位
- 形成4个5万吨级集装箱泊位及建设相应配套设施,码头岸线总长1,142米
- 设计年通过能力为180万标箱

在建项目基本情况

- 合同金额约5.92亿元
- 合同工期33个月 (2014.8 2017.5)

工程实例 - 盐田国际集装箱码头工程耐久性

以工程质量的安全耐久为核心进行设计,提出 "50年不大修"这一耐久性要求,适当提高技术标准,以确保主体结构的安全度和可靠度

设计标准部分取值对比

项目		本项目设计取值	国内标准、规范取值
11 6 10 14 10	作业期	风速25m/s	风速20m/s
装卸桥荷载	台风期	风速77 m/s	风速55m/s
	靠泊速度	0.15m/s	0.08~0.10m/s
船舶荷载	撞击力	结构设计考虑船舶事故撞 击时不破坏,事故撞击力取为正常撞击力的两倍	结构设计取正常撞击力,不 考虑事故撞击的要求
岸坡稳定 整体稳定抗力分项系数		正常荷载: K>1.3	使用期: K=1.1~1.3
		极端荷载时: K>1.2	施工期: K=1.0~1.2

工程实例 - 盐田国际集装箱码头工程-全寿命周期

- 从工程的实际检测结果来看, "50年不大修"这一质量目标在技术措施上完全可以保证、可以实现
- 按照"全寿命周期"这一理念进行建设的项目的质量 更高,结构更加安全、可靠。
- 与一般的项目相比,按照"全寿命周期"这一理念进行建设、运营的项目,尽管在工程建设方面的投资额会相对较高(经测算,约高出25%),但全寿命周期的总成本却更低,从而使得建设项目更能发挥出良好的社会效益和经济效益

(一)提升工程设计水平

2. 注重统筹设计

把推进模块化建设作为公路水运工程发展的方向

一) 提升工程设计水平

虎门二桥引桥中高墩区域采用预制节段拼装箱梁标准化设计

全线3533榀梁统一在一个标准化工厂集中预制,通过专业架桥机装配化架设

一 (一)提升工程设计水平

3.倡导设计创作

大地音符(引桥与环境融为一体)

(二)提升工程管理水平

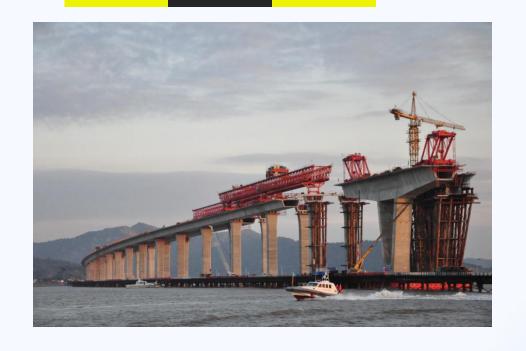
- 4.推进建设管理专业化
- 建设单位管理能力专业化,是现代大型工程项目建设组织的前提
- 提高分包工程管理和劳务 作业队伍的专业化能力是 提高施工专业化水平的主 要方向

(二)提升工程管理水平

5.推进施工标准化-使标 准成为习惯

●●● 工厂化生产 装配化施工

≥ ■ 施工工艺标准化


施工场站建设规范化

管理模式体系化

乐清湾大桥工程概况

主线按双向六车道高速公路技术标准设计,设计行车速度为100Km/h。 其中,桥梁工程23.83km/25座,占路线全长的62.4%;隧道工程3.87km/3座,占路线全长的10.1%,路基工程10.5km,占路线全长的27.5%。 浙江省乐清湾大桥及接 线工程是浙江沿海高速公路 的重要组成部分,全长约 38.2km,概算金额约为 120亿元,其中建安工程量 约84亿元。

"场"到"厂"的转变

— 提高工厂化覆盖率

招标文件明确要求

标段设置

预制厂1个

拌和厂不超过2个

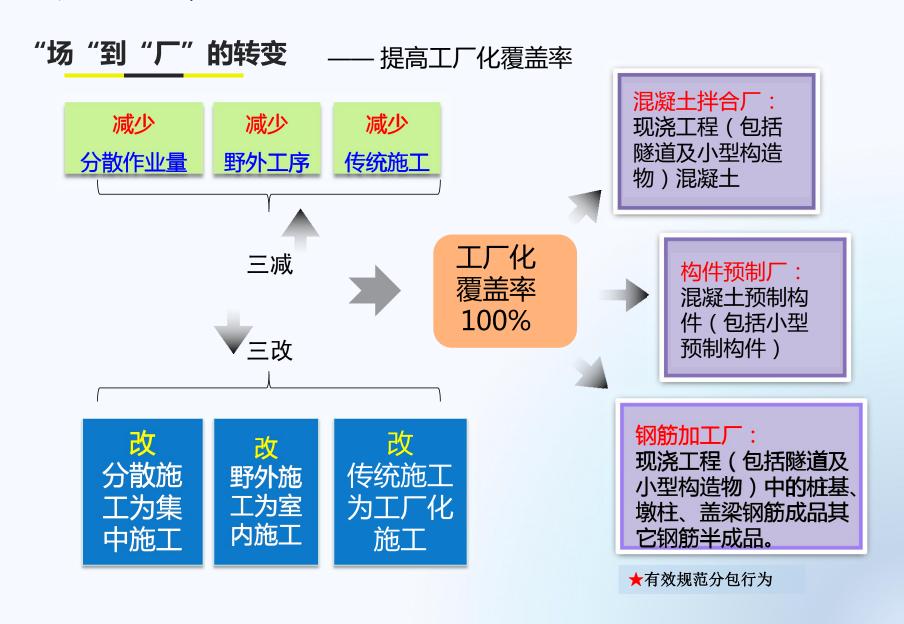
集

中

钢筋加工厂不超过2个

钢筋集中加工

构件集中预制


混凝土集中拌合

全线7个标段 共设置

6个预制厂

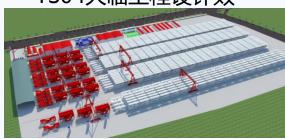
10个拌合厂

11个钢筋加工厂

"场"到"厂"的转变

_ 实施临建专项管理

临建工程 专项设计


指挥部 审批

验收合格 投入生产

YS04大临工程设计效

YS05节段梁预制厂设计效 果图

指挥部大临工程 审批单

实景照片

"场 "到 "厂" 的转变 —— 标准化工厂生产

工前:原材料进厂准入制

过程:工序验收标准挂

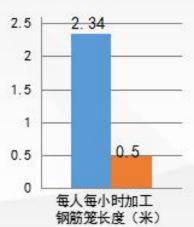
牌制,工序交接零误差

工后:产品验收标识 《出厂合格证》制度

原材料讲场验收半成品存放区

钢筋加工工序验收

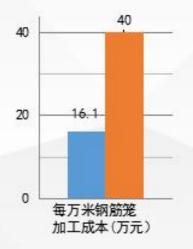
89 760 45 89		55-389-998 t 10-409						
"TY 102: 000 000 "C"		LE 1-9						
1/1 (10), 100 - 350 500 500 500 500 500 500 500 500 500		Dug.						
					C 201-	70 07F 668 889 C max 2	592 899 600 C mon 3	- OS- 23
					250	F4, -0	481, 484	
270	45.00	931, 270						
550	P91,-10	NSL-350						
3600	+4,-5	Now, Now						
L)-	41,-0	30 , 10m						
69.00° 500 objects		82%						
	#	1. 44						
48E 86C 301 REL TIC		資施水化						
308.008 -6-038.03E 4C		祖元祖						
19E-86-252-4F-303		-F\$0.						
75K AND 100 YES		-43.						
80x 10x 1:1 RH		348-4.54						


节段梁出厂合格证

"场 "到 "厂" 的转变

标准化工厂生产

传统工艺改变难 滚焊机不愿意用


指挥部大力推进 滚焊机应用

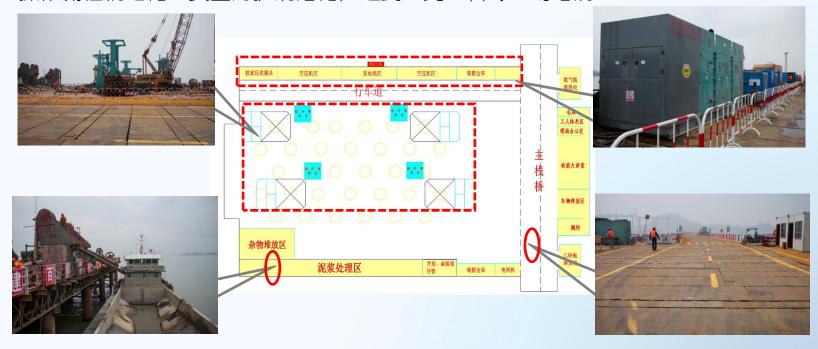
滚焊机覆盖率100%

滚焊机加工 一功效对比

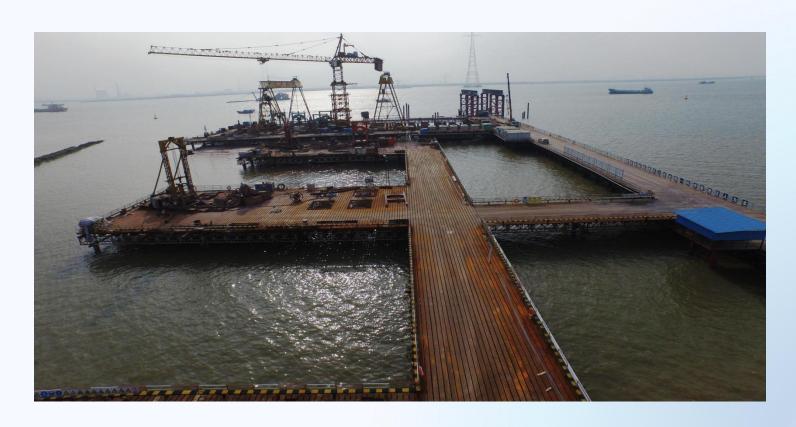
传统加工

"场 "到 "厂" 的转变 —— 标准化工厂生产

工序标准现场公示



"场 "到 "厂" 的转变 —— 标准化工厂生产


"工点"工厂化 施工现场推行工厂化管理理念

无论工点大小,积极推行工厂化管理理念,做到施工场地封闭化、场容场貌标准化、操作流程精细化、安全防护规范化,达到工完、料尽、场地清。

(二)提升工程管理水平

▲水上栈桥平台标准化

(二)提升工程管理水平

▲ 塔身模板平台标准化

(二)提升工程管理水平

承台钢筋绑扎标准化

(二)提升工程管理水平

塔身钢筋绑扎标准化

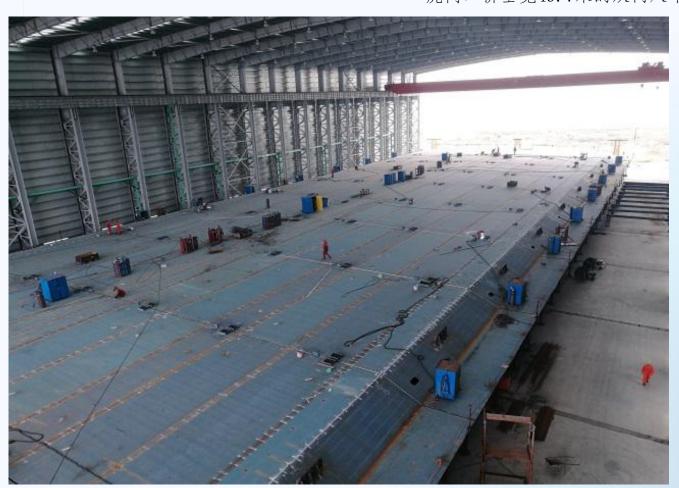
(二)提升工程管理水平

节段梁预制场标准化

(二)提升工程管理水平

■ 节段梁架设装配化

(二)提升工程管理水平


■ 索鞍工厂化,精工制造

(二)提升工程管理水平

■ 钢箱梁制造工厂化、车间化

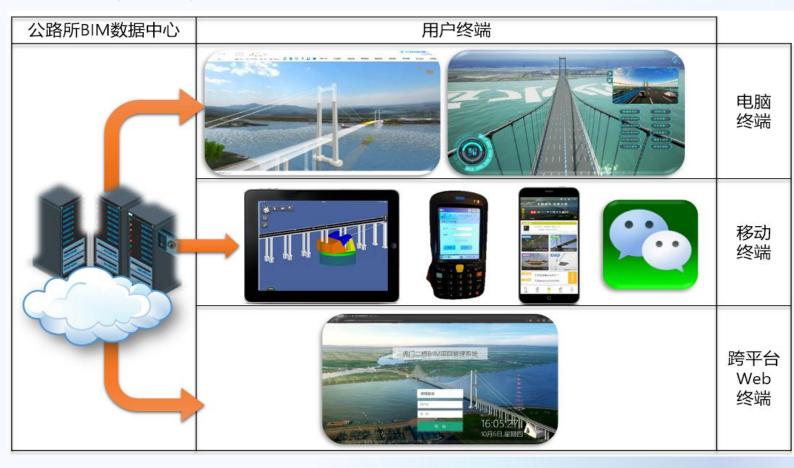
虎门二桥全宽49.7米的双向八车道钢箱梁在工厂拼装

(二)提升工程管理水平

■ 钢箱梁制造自动化, U肋顶板采用机器人自动焊接

(二)提升工程管理水平

■ 缆索制造工厂化、车间化

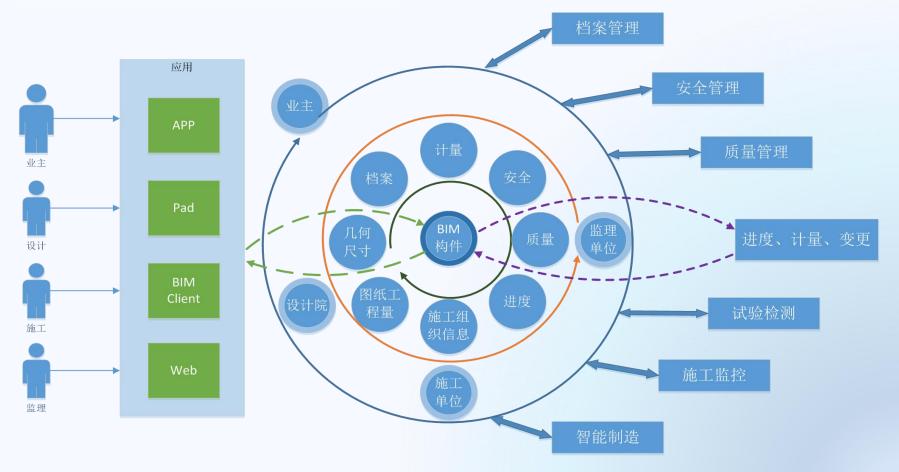


(二)提升工程管理水平

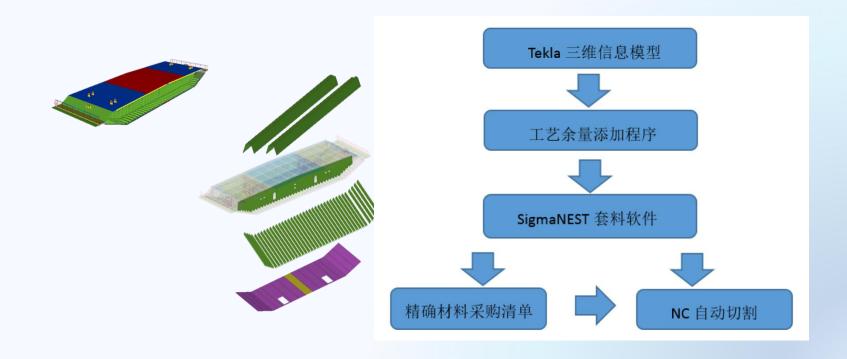
7. 推进工程管理信息化

积极推行M技术

虎门二桥效果图

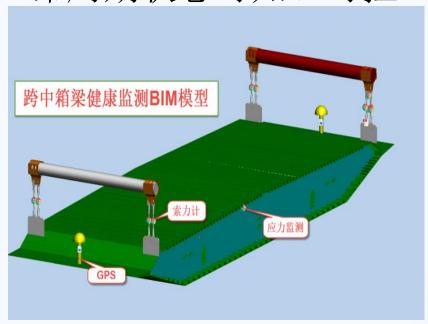

- 虎门二桥工程位于珠江三角洲核心区域,为连接珠江口东西两岸的重要过江通道,全 长12.89千米。项目批复概算111.8亿元,主体工程2014年8月开工,建设工期5年。
- 项目全线采用桥梁方案,两座超千米的跨江特大桥,坭洲水道桥为658+1688米的双塔双 跨钢箱梁悬索桥,大沙水道桥为1200米双塔单跨钢箱梁悬索桥。

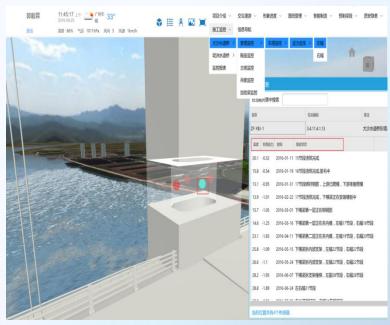
■ 互联网+BIM技术, 打造"智慧工地"


推进工程管理信息化

■ 开发了八大功能模块

推进工程管理信息化

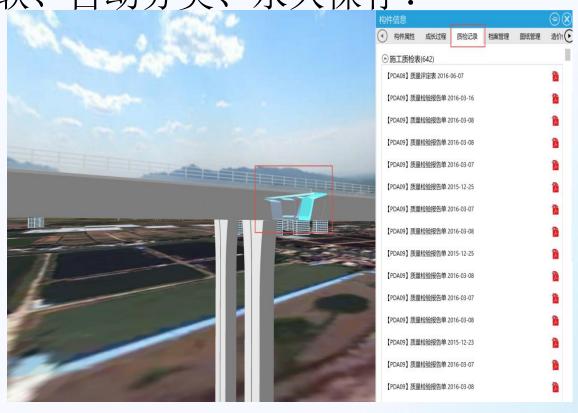

钢箱梁BIM物料清单智能输出套料图,提高钢材使用率,缩短下料时间!



推进工程管理信息化

施工监控与健康监测一体化管理,桥梁结构全寿

命周期状态可知、可控!



推进工程管理信息化

质量资料管理,数万份质量资料自动按BIM构件关

联、自动分类、永久保存!

- > 质量检评表
- > 检验报告单
- > 材料试验表

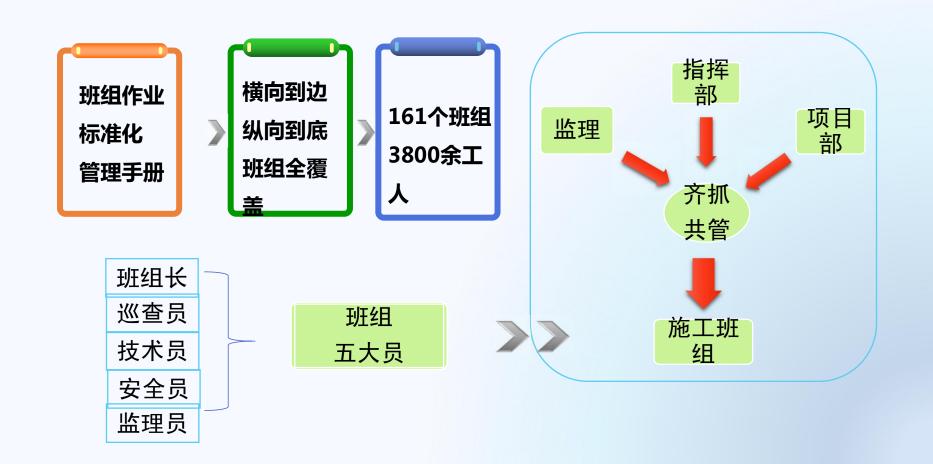
推进工程管理信息化

- BIM成果效益——提升功效
 - ▶ BIM建模:复核设计100余项,工序纠正20余项
 - ▶ 管理效益:解决质量隐患107项、安全隐患224项 签认构件3212个,记录工序5000余条
 - ▶ 业务互通: 打通质量、安全、进度、造价、图纸、预制梁、钢结构、监控、
 - 》BIM平台:集成图纸80册,土建质建资料3万余份,钢结构生产记录500余份,工程量清单3百余条,用户306个,初步形成施工期大数据平台!

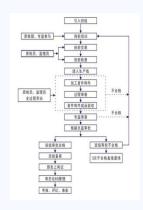
8. 推进班组管理规范化

- > 强化班组能力建设
- 推行班组首次作业合格确 认制
- > 推行班组人员实名制管理

8. 推进班组管理规范化


班组规范化管理

- 1、施工现场不规范;
- 2、生产班组施工水平参差不齐问题;
- 3、工人对技术规范问题不熟悉;
- 4、农民工向产业工人转变问题;
- 5、施工企业软肋"以包代管"问题;


推行班组规范化 管理的缘由?

8. 推进班组管理规范化

班组规范化管理 —— 网络化班组划分

班组规范化管理—— 班组首件制

班组首件认可

班组首件交底 首件认可现场 首件工程认可

首件监理报 检

班组首件认可制

首件认可验收单

预制T梁首件

现浇箱梁首件

桥面护栏首件

验收、首件总结,班组工人、技术员、监理 人员对工序的技术要求、安全要求、操作标 准化等明确了要求,对工序"三检制度"进 行了演练与熟悉。

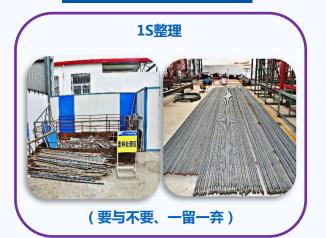
班组规范化管理-- —— 班组考核与清退制

最美工人"评选

班组清退制

- 一、<mark>新进场典型</mark>进行首件工程试生产,严格每道工序的检查验收, <u>3次验收不合格则清退班组;</u>
- 二、中场景域考核不合格,则清退班组,置于清黑66个景型。

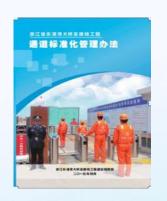
"最美班组"评选


班组规范化管理—— 班组日常标准化

班组六步走班循环

班组规范化管理 — 班组日常标准化

班组现场6S管理



班组规范化管理 ——班组防护标准化

通道标准化

▶全面推广定型化、 装配式通道专项设 计与验收

安全生产 "三个专项 标准"

防护标准化

标志标牌标准化

▶统一规范全线安全 标志标牌

▶统一规范高空作业、 跨路施工等区域的 安全防护措施

安全标志和 安全防护设置

管理手册

8. 推进班组管理规范化

班组规范化管理 ——班组防护标准化

标志牌标准化

8. 推进班组管理规范化

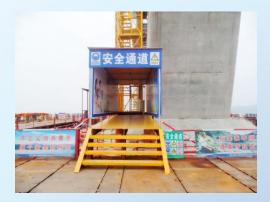
班组规范化管理 ——班组防护标准化

防护标准化

8. 推进班组管理规范化


班组规范化管理 ——班组防护标准化

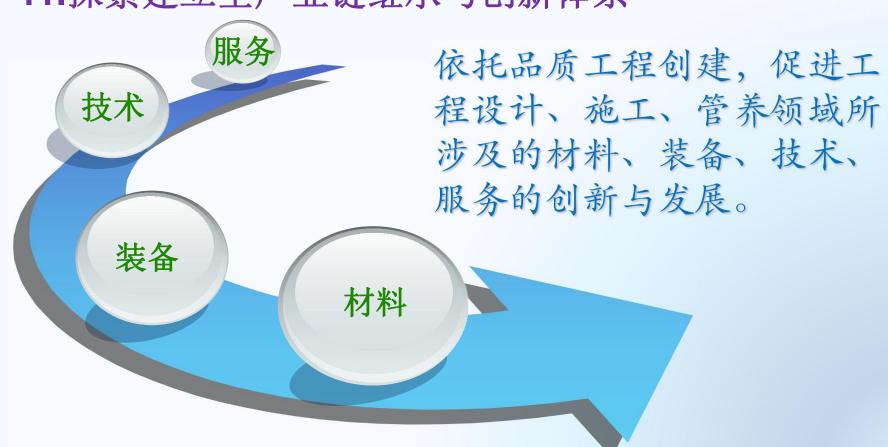
通道标准化



(三)提升工程科技创新能力

9.积极推广应用"四新技术"

(三)提升工程科技创新能力


10.发挥技术标准的先导作用

一是坚持品 质工程的目 标导向 二是不断完善标准形成机制,充分 发挥标准的 分数和指导 们领和指导

三是不断提 高标准的含 金量

(三)提升工程科技创新能力

11.探索建立全产业链继承与创新体系

(四)提升工程质量水平

12. 落实工程质量责任

- 明确界定从业各方质量主体责任,健全工程质量责任体系推行班组首次作业合格确认制
- 明确责任各方,特别是关键岗位、关键人的工作规范及工作标准。

(四)提升工程质量水平

13. 推进质量风险预防管理

- > 树立质量风险意识
- > 建立科学的质量风险防控机制
- 科学编制施工组织设计

(四)提升工程质量水平

14. 加强过程质量控制

对自己生产 的产品和工 序负责。 上道工序的 质量情况应 当满足下道工序作业的 质量标准。

代表企业对产品和工序质量的检查、验收和评价。

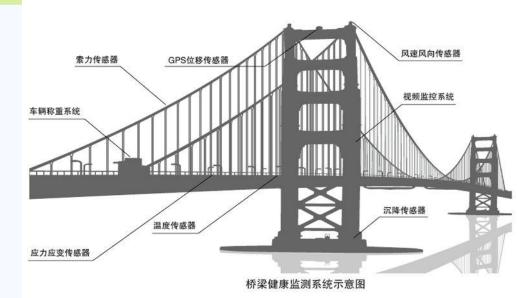
(四)提升工程质量水平

15. 强化工程耐久性保障措施

进一步梳理和明确涉及工程耐久性的关键点和区域,提 出明确、有效、可行的控制措施,并严格执行。认真研 究和完善耐久性的检测方法和评价标准。

(五)提升工程安全保障水平

16. 加强工程安全风险管理基础体系建设


- 建立安全风险分级管控和隐患 治理双重预防体系
- > 倡导实行风险管理、隐患管理

(五)提升工程安全保障水平

17. 提升工程结构安全

- 实时监测、分析、预警导致结构安全的关键指标,对结构安全的关键指标,对结构安全的状态可知、可控。
- 加大科技攻关力度,对影响工程结构安全的关键指标全面、深入地开展调研与评估。

(五)提升工程安全保障水平

- 18. 深化"平安工地"建设
 - > 落实安全生产条件、落实安全生产责任、有效开展风险 防控和隐患排查治理、提升应急处置能力。

(五)提升工程安全保障水平

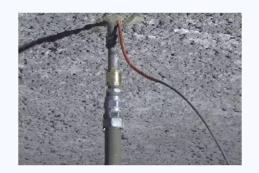
19. 提升工程安全服务水平

- 提升交通设施安全运行的监测、 预警、排险、修复能力
- > 提升交通设施的应急处置能力

(六)提升工程绿色环保水平

(六)提升工程绿色环保水平

(七)提升打造品质工程的软实力


- 23.加强管理人员素质建设
 - > 建设一支具有现代工程管理能 力、专业技能、良好职业道德 的管理骨干队伍。
- 24.提升一线工人队伍素质
 - > 提高从业一线人员的技术和文 化素质,促进交通建设产业工 人、技术工人队伍的形成。

工程实例 - 乐清湾大桥

培养产业工匠

——鼓励创新,倡导"三微改"

隧道拱顶锚杆注浆

节段梁预制悬拼工艺 工艺微改进,共16项

隧道二衬砼自动喷淋

移动式六角空设备微改造,共16项

仰拱和二衬钢筋精度

钢筋骨架胎架施 工法微改良,共37项

工程实例 - 乐清湾大桥

培养产业工匠

—— 正向激励,提升工人获得感

"两美"浙江立功竞赛

寻找"最美"建设者

质量安全知识竞赛

开展技能比武

"最美班组"评选表彰

"工地之星"表彰

工程实例 - 乐清湾大桥

培养产业工匠

—— 人文关怀, 共建家园文化

特殊工种培训取证

举办联欢会

改善工人住 宿条件

开设丁友学堂

组织马拉松

发挥工人文 艺才能

班组长巡回交流

组织工地集

齐心协力共圆 大桥梦

》(七) 提升打造品质工程的软实力

25. 培养品质工程文化

(七)提升打造品质工程的软实力

26. 实施品牌战略

> 提升中国交通和企业品牌形象,让中国品牌走向世界。

汇报内容

1	打造"品质工程"的背景
2	打造"品质工程"的必要性
3	我国公路水运工程建设管理存在的问题
4	品质工程内涵解读
5	品质工程的总体要求
6	打造品质工程的主要措施
7	打造品质工程的保障要求

一加强组织领导


形成部省联动的工作协调机制、 专家咨询机制。加强经验交流和 借鉴。不断深化对品质工程的理 解和认识,不断从新的角度、新 的高度认识品质工程, 为品质工 程注入新的内容和动力。凝聚共 识. 赢得社会的关注、认可和支 持。

二加强基础保障

规划是前提、设计是灵魂,工程建设项目要坚持科学论证决策。严格基本建设程序保障。

一是规范建设 市场,公平竞 争、优胜劣汰 二是确保合理 的设计周期、 有效的施工 工期。 三是规范设 计变更,加 强工期调整、 费用调整的 管理 四是坚持合 理标价,保 证工程资金 足额及时到 位

三加强示范引导

出台品质工程创建实施 方案,研究制定品质工程评价标准和评价体系

四完善激励机制

发挥政策的引导激励作用, 让积极参与、扎实创建品 质工程的企业从中受益。

